Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.295
1.
Nat Biotechnol ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38744947

Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.

2.
One Health ; 18: 100735, 2024 Jun.
Article En | MEDLINE | ID: mdl-38711479

Background: Borrelia miyamotoi is a spirochete species transmitted via hard ticks. Following its discovery in Japan, this pathogen has been detected around the world, and is increasingly confirmed as a human pathogen causing febrile disease, namely relapsing fever. Its presence has been confirmed in the Northeast China. However, there is little information regarding the presence of B. miyamotoi and other hard-tick-borne relapsing fever spirochetes in southern China including Yunnan province, where tick and animal species are abundant and many people both inhabit and visit for recreation. Methods: For the present study, we collected samples of ticks, wildlife, and domestic animal hosts from different counties in Yunnan province. Nucleic acids from samples were extracted, and the presence of B. miyamotoi and other relapsing fever spirochetes was confirmed using polymerase chain reaction (PCR) for the 16S rRNA specific target gene fragment. The positive samples were then amplified for partial genome of the flaB and glpQ genes. Statistical differences in its distribution were analyzed by SPSS 20 software. Sequence of partial 16S rRNA, flaB and glpQ genome were analyzed and phylogenetic trees were constructed. Results: A total of 8260 samples including 2304 ticks, 4120 small mammals and 1836 blood of domestic animal hosts were collected for screening for infection of B. miyamotoi and other relapsing fever spirochetes. Cattle and sheep act as the main hosts and Rhipicephalus microplus, Haemaphysalis nepalensis, H. kolonini and Ixodes ovatus were identified as the important vector host with high prevalence or wide distribution. Only one Mus caroli (mouse) and one Sorex alpinus (shrew) were confirmed positive for relapsing fever spirochetes. Evidence of vertical transmission in ticks was also confirmed. Two known strains of B. miyamotoi and one novel relapsing fever spirochetes, B. theileri-like agent, were confirmed and described with their host adaptation, mutation, and potential risk of spreading and spillover for human beings. Conclusions: Our results provide new evidence of relapsing fever spirochetes in vector and animal hosts in Yunnan province based on large sample sizes, and offer guidance on further investigation, surveillance and monitoring of this pathogen.

3.
Molecules ; 29(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731473

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Multigene Family , Peptide Synthases , Polyketide Synthases , Streptomyces , Streptomyces/genetics , Streptomyces/enzymology , Streptomyces/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Peptide Synthases/metabolism , Peptide Synthases/genetics , Peptide Synthases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
4.
NPJ Sci Learn ; 9(1): 36, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702345

Proficient reading requires critical phonological processing skill that interacts with both genetic and environmental factors. However, the precise nature of the relationships between phonological processing and genetic and environmental factors are poorly understood. We analyzed data from the Genes, Reading and Dyslexia (GRaD) Study on 1419 children ages 8-15 years from African-American and Hispanic-American family backgrounds living in North America. The analyses showed that phonological awareness mediated the relationship between DCDC2-READ1 and reading outcomes when parental education and socioeconomic status was low. The association between READ1 and reading performance is complex, whereby mediation by phonological awareness was significantly moderated by both parental education and socioeconomic status. These results show the importance of home environment and phonological skills when determining associations between READ1 and reading outcomes. This will be an important consideration in the development of genetic screening for risk of reading disability.

5.
Mol Biotechnol ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38635107

Gallbladder Cancer (GBC) is a lethal malignancy with limited treatment options and poor prognosis. Recent studies have emphasized the role of ferroptosis, a regulated form of cell death, in various cancers, including GBC. We applied bioinformatics methodologies on four GBC datasets to identify differentially expressed genes (DEGs). An intersection of DEGs from the four datasets with ferroptosis and GBC-associated genes was done to identify key ferroptosis-related genes in GBC. GSVA pathway enrichment analysis and immune cell infiltration assessment were conducted to explore their functional roles and interactions. Seven ferroptosis-related genes, EZH2, MUC1, PVT1, GOT1, CDO1, LIFR, and TFAP2A, were identified to be related to GBC. These genes were associated with vital signaling pathways like the G2/M checkpoint and DNA repair and showed significant correlations with immune cell infiltration in GBC. Receiver Operating Characteristic (ROC) curve analysis revealed their high diagnostic potential, with Area Under the Curve (AUC) values ranging from 0.796 to 0.953. Our findings underscore the pivotal role of ferroptosis in GBC and the potential of ferroptosis-related genes as diagnostic biomarkers. This study lays a foundation for further research into ferroptosis-based therapeutic strategies for GBC.

6.
Brain Res Bull ; 211: 110944, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604377

Ischemic stroke is a serious cerebrovascular condition. Isobavachalcone (ISO) has been documented to exhibit an anti-inflammatory effect across a variety of diseases; however, its protective impact on ischemic stroke remains unexplored. In this study, we evaluated the influence of ISO in both transient middle cerebral artery occlusion/reperfusion (tMCAO/R) rat models and oxygen-glucose deprivation/reperfusion (OGD/R) cell models. We observed that pretreatment with 50 mg/kg ISO diminished the volume of brain infarction, reduced brain edema, and ameliorated neurological deficits in rats. A reduction in Nissl bodies was noted in the tMCAO/R group, which was reversed following treatment with 50 mg/kg ISO. TUNEL/NeuN double staining revealed a decrease in TUNEL-positive cells in tMCAO/R rats treated with ISO. Furthermore, ISO treatment suppressed the expression of cleaved caspase-3 and BAX, while elevating the expression of BCL-2 in tMCAO/R rats. The levels of CD86 and iNOS were elevated in tMCAO/R rats; conversely, ISO treatment enhanced the expression of CD206 and Arg-1. Additionally, the expression of TNF-α, IL-6, and IL-1ß was elevated in tMCAO/R rats, whereas ISO treatment counteracted this effect. ISO treatment also increased the expression of TGF-ß and IL-10 in the ischemic penumbra of tMCAO/R rats. It was found that ISO treatment hindered microglial M1 polarization and favored M2 polarization. Histone Deacetylase 1 (HDAC1) is the downstream target protein of ISO, with ISO treatment resulting in decreased HDAC1 expression in both tMCAO/R rats and OGD/R-induced cells. Overexpression of HDAC1 was shown to promote microglial M1 polarization and inhibit M2 polarization in OGD/R+ISO cells. Overall, ISO treatment mitigated brain damage following ischemic stroke by promoting M2 polarization and attenuated ischemic injury by repressing HDAC1 expression.


Chalcones , Histone Deacetylase 1 , Ischemic Stroke , Rats, Sprague-Dawley , Animals , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Rats , Histone Deacetylase 1/metabolism , Chalcones/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Neuroprotective Agents/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Microglia/drug effects , Microglia/metabolism , Disease Models, Animal
7.
J Appl Toxicol ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38655841

Botanicals contain complex mixtures of chemicals most of which lack pharmacokinetic data in humans. Since physicochemical and pharmacokinetic properties dictate the in vivo exposure of botanical constituents, these parameters greatly impact the pharmacological and toxicological effects of botanicals in consumer products. This study sought to use computational (i.e., in silico) models, including quantitative structure-activity relationships (QSAR) and physiologically based pharmacokinetic (PBPK) modeling, to predict properties of botanical constituents. One hundred and three major constituents (e.g., withanolides, mitragynine, and yohimbine) in 13 botanicals (e.g., ashwagandha, kratom, and yohimbe) were investigated. The predicted properties included biopharmaceutical classification system (BCS) classes based on aqueous solubility and permeability, oral absorption, liver microsomal clearance, oral bioavailability, and others. Over half of these constituents fell into BCS classes I and II at dose levels no greater than 100 mg per day, indicating high permeability and absorption (%Fa > 75%) in the gastrointestinal tract. However, some constituents such as glycosides in ashwagandha and Asian ginseng showed low bioavailability after oral administration due to poor absorption (BCS classes III and IV, %Fa < 40%). These in silico results fill data gaps for botanical constituents and could guide future safety studies. For example, the predicted human plasma concentrations may help select concentrations for in vitro toxicity testing. Additionally, the in silico data could be used in tiered or batteries of assays to assess the safety of botanical products. For example, highly absorbed botanical constituents indicate potential high exposure in the body, which could lead to toxic effects.

8.
Heliyon ; 10(7): e29151, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38617936

Baicalin, a flavonoid extracted from traditional Chinese medicine, Scutellaria baicalensis has significant anti-inflammatory effects. Microsponges are drug delivery systems that improve drug stability and slow the release rate. The combination of baicalin and the microsponges produced a new and stable system for its delivery, resulting in a novel formulation of baicalin. Baicalin microsponges (BM) were prepared using the quasi-emulsion solvent diffusion method. Effects of the mass ratio of the polymer (ethylcellulose) to baicalin, the concentration of the emulsifier polyvinyl alcohol (PVA), the stirring speed on the encapsulation efficiency (EE), and yield of the microsponges were investigated by combining the one-factor test and Box-Behnken design (BBD). The preparation process was standardised using 2.61:1 mass ratio of ethyl cellulose to baicalin, 2.17% concentration of PVA, with stirring at 794 rpm. Optimised BM formulations were evaluated for the parameters of EE (54.06 ± 3.02)% and yield of (70.37 ± 2.41)%, transmission electron microscopy (TEM), and in vitro cell evaluation. Results of the in vitro anti-inflammatory assay showed that baicalin microsponges-pretreated-lipopolysaccharide (LPS)-induced RAW264.7, mouse macrophages showed reduced inflammatory response, similar to that seen in baicalin-treated macrophages.

9.
J Pharm Anal ; 14(3): 416-426, 2024 Mar.
Article En | MEDLINE | ID: mdl-38618244

The comprehensive detection and identification of active ingredients in complex matrices is a crucial challenge. Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is the most prominent analytical platform for the exploration of novel active compounds from complex matrices. However, the LC-HRMS-based analysis workflow suffers from several bottleneck issues, such as trace content of target compounds, limited acquisition for fragment information, and uncertainty in interpreting relevant MS2 spectra. Lycibarbarspermidines are vital antioxidant active ingredients in Lycii Fructus, while the reported structures are merely focused on dicaffeoylspermidines due to their low content. To comprehensively detect the new structures of lycibarbarspermidine derivatives, a "depict" strategy was developed in this study. First, potential new lycibarbarspermidine derivatives were designed according to the biosynthetic pathway, and a comprehensive database was established, which enlarged the coverage of lycibarbarspermidine derivatives. Second, the polarity-oriented sample preparation of potential new compounds increased the concentration of the target compounds. Third, the construction of the molecular network based on the fragmentation pathway of lycibarbarspermidine derivatives broadened the comprehensiveness of identification. Finally, the weak response signals were captured by data-dependent scanning (DDA) followed by parallel reaction monitoring (PRM), and the efficiency of acquiring MS2 fragment ions of target compounds was significantly improved. Based on the integrated strategy above, 210 lycibarbarspermidine derivatives were detected and identified from Lycii Fructus, and in particular, 170 potential new compounds were structurally characterized. The integrated strategy improved the sensitivity of detection and the coverage of low-response components, and it is expected to be a promising pipeline for discovering new compounds.

10.
Inflammation ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630167

Innate immune response is the first line of defense for the host against virus invasion. One important response is the synthesis and secretion of type I interferon (IFN-I) in the virus-infected host cells. Here, we found that respiratory syncytial virus (RSV) infection induced high expression of TRIM25, which belongs to the tripartite motif-containing (TRIM) family of proteins. TRIM25 bound and activated retinoic acid-inducible gene I (RIG-I) by K63-linked ubiquitination. Accordingly, RIG-I mediated the production of IFN-I mainly through the nuclear factor kappa-B (NF-κB) pathway in respiratory epithelial cells. Interestingly, IFN-I, in turn, promoted a high expression of TRIM38 which downregulated the expression of IFN-I by reducing the protein level of RIG-I by K48-linked ubiquitination. More importantly, the binding site of TRIM25 to RIG-I was found in the narrow 25th-43rd amino acid (aa) region of RIG-I N-terminus. In contrast, the binding sites of TRIM38 to RIG-I were found in a much wider amino acid region, which included the binding site of TRIM25 on RIG-I. As a result, TRIM38 inhibits the production of IFN-I by competing with TRIM25 for RIG-I binding. Thus, TRIM38 negatively regulates RIG-I activation to, in turn, downregulate IFN-I expression, thus interfering with host immune response. A negative feedback loop effectively "puts the brakes" on the reaction once host immune response is overactivated and homeostasis is unbalanced. We also discovered that TRIM25 bound RIG-I by a new K63-linked ubiquitination located at K-45 of the first caspase recruitment domain (CARD). Collectively, these results confirm an antagonism between TRIM38 and TRIM25 in regulating IFN-I production by affecting RIG-I activity following RNA virus infection.

11.
Arch Toxicol ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38563870

The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.

12.
Fitoterapia ; 175: 105956, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38604261

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.

13.
J Environ Sci (China) ; 142: 115-128, 2024 Aug.
Article En | MEDLINE | ID: mdl-38527878

Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehyde-crosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35°C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects.


Chitosan , Groundwater , Water Pollutants, Chemical , Iron/chemistry , Glutaral , Longevity , Water Pollutants, Chemical/chemistry , Chromium/analysis , Groundwater/chemistry , Adsorption
14.
Molecules ; 29(6)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38542855

Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented.


Fungicides, Industrial , Fungicides, Industrial/pharmacology , Benzimidazoles/pharmacology , Benzimidazoles/metabolism , Carbamates/pharmacology , Thiophanate , Anti-Bacterial Agents
15.
BMC Pulm Med ; 24(1): 116, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443860

BACKGROUND: Little attention has been paid to the pathophysiological changes in the natural history of chronic obstructive pulmonary disease (COPD). The destructions of the small airways were visualized on thoracic micro-computed tomography scan. We investigated whether small airway inflammation (SAI) was the risk for the development of COPD. METHODS: A total of 1062 patients were enrolled and analyzed in the study. The partitioned airway inflammation was determined by exhaled nitric oxide (NO) of FnNO, FeNO50, FeNO200, and calculated CaNOdual. Both FeNO200 and CaNOdual were compared to detect the promising predictor for peripheral airway/alveolar inflammation in COPD. The correlation between exhaled NO and white cell classification was evaluated to determine the inflammation type during the development of COPD. RESULTS: Exhaled NO levels (FnNO, FeNO50, FeNO200, and CaNOdual) were the highest in the COPD group compared with all other groups. Furthermore, compared with controls, exhaled NO levels (FeNO50, FeNO200, and CaNOdual) were also significantly higher in the emphysema, chronic bronchitis, and smoking groups. FeNO200 was found to be a promising predictor for peripheral airway/alveolar inflammation (area under the curve [AUC] of the receiver operating characteristic [ROC] curve, area under the curve [AUC] = 0.841) compared with CaNOdual (AUC ROC = 0.707) in COPD. FeNO200 was the main risk factor (adjusted odds ratio, 2.191; 95% CI, 1.797-2.671; p = 0.002) for the development of COPD. The blood eosinophil and basophil levels were correlated with FeNO50 and FeNO200. CONCLUSION: The complete airway inflammations were shown in COPD, whereas SAI was the main risk factor for the development of COPD, which might relate to eosinophil and basophil levels.


Bronchitis, Chronic , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , X-Ray Microtomography , Inflammation , Nitric Oxide
16.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Article En | MEDLINE | ID: mdl-38462771

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Multiple Myeloma , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , CRISPR-Cas Systems , Disease Models, Animal , Lipid Peroxidation , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Multiple Myeloma/drug therapy
17.
Technol Health Care ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38517821

BACKGROUND: It is difficult to differentiate between chronic obstructive pulmonary disease (COPD)-peripheral bronchogenic carcinoma (COPD-PBC) and inflammatory masses. OBJECTIVE: This study aims to predict COPD-PBC based on clinical data and preoperative Habitat-based enhanced CT radiomics (HECT radiomics) modeling. METHODS: A retrospective analysis was conducted on clinical imaging data of 232 cases of postoperative pathological confirmed PBC or inflammatory masses. The PBC group consisted of 82 cases, while the non-PBC group consisted of 150 cases. A training set and a testing set were established using a 7:3 ratio and a time cutoff point. In the training set, multiple models were established using clinical data and radiomics texture changes within different enhanced areas of the CT mass (HECT radiomics). The AUC values of each model were compared using Delong's test, and the clinical net benefit of the models was tested using decision curve analysis (DCA). The models were then externally validated in the testing set, and a nomogram of predicting COPD-PBC was created. RESULTS: Univariate analysis confirmed that female gender, tumor morphology, CEA, Cyfra21-1, CT enhancement pattern, and Habitat-Radscore B/C were predictive factors for COPD-PBC (P< 0.05). The combination model based on these factors had significantly higher predictive performance [AUC: 0.894, 95% CI (0.836-0.936)] than the clinical data model [AUC: 0.758, 95% CI (0.685-0.822)] and radiomics model [AUC: 0.828, 95% CI (0.761-0.882)]. DCA also confirmed the higher clinical net benefit of the combination model, which was validated in the testing set. The nomogram developed based on the combination model helped predict COPD-PBC. CONCLUSION: The combination model based on clinical data and Habitat-based enhanced CT radiomics can help differentiate COPD-PBC, providing a new non-invasive and efficient method for its diagnosis, treatment, and clinical decision-making.

18.
Redox Biol ; 71: 103103, 2024 May.
Article En | MEDLINE | ID: mdl-38471282

Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.


Carcinoma, Hepatocellular , Diabetes Mellitus , Liver Neoplasms , Animals , Humans , Rats , Carcinoma, Hepatocellular/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Glucose , Liver Neoplasms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Rats, Sprague-Dawley , Thyroid Hormone-Binding Proteins , Tumor Microenvironment
19.
J Med Virol ; 96(3): e29454, 2024 Mar.
Article En | MEDLINE | ID: mdl-38445768

Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.


COVID-19 , Vaccines , Animals , Mice , Vaccines, Combined , Fungal Proteins , Saccharomyces cerevisiae/genetics , COVID-19/prevention & control , SARS-CoV-2 , Vaccination
20.
Heliyon ; 10(4): e26653, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38434060

Background: Autoimmune encephalitis (AE) is a neuroautoimmune disease featured by the presence of antibodies targeting neuronal surface, synaptic, or intracellular antigens. An increasing number of articles on its clinical manifestations, treatments, and prognosis have appeared in recent years. The objectives of this study were to summarize this growing body of literature and provide an overview of hotspots and trends in AE research using bibliometric analysis. Methods: We retrieved AE-related articles published between 1999 and 2022 from the Web of Science Core Collection. Using bibliometric websites and software, we analyzed the data of AE research, including details about countries, institutions, authors, references, journals, and keywords. Results: We analyzed 3348 articles, with an average of 32.83 citations per article and an H-index of 141. The USA (1091, 32.587%), China (531, 15.860%), Germany (447, 13.351%), England (266, 7.945%), and Japan (213, 6.362%) had the greatest numbers of publications. The top five institutions by numbers of publications were Oxford (143, 4.271%), the Udice French Research Universities (135, 4.032%), the University of Pennsylvania (135, 4.032%), l'Institut National de la Sante de la Recherche Medicale Inserm (113, 3.375%), and the University of Barcelona (110, 3.286%). The most productive authors were J. Dalmau (98, 2.927%), A. Vincent (65, 2.479%), H. Pruess (64, 1.912%), C. G. Bien (43, 1.284%), and F. Graus (43, 1.284%). "autoimmune encephalitis" was the most frequently used keyword (430), followed by "antibodies" (420), "NMDA receptor encephalitis" (383), and "limbic encephalitis" (368). In recent years, research hotspots have focused on the diagnosis and immunotherapy of NMDAR encephalitis and on limbic encephalitis. Conclusion: Developed Western countries have made significant contributions to this field. China has shown a steady increase in the number of publications in recent years, but the quality and influence of these articles warrant efforts at improvement. Future directions in AE research lie in two key areas: (i) the clinical manifestations, prevalence, and prognosis of AE (enabled by advances in diagnosis); and (ii) the efficacy and safety of targeted, individualized immunotherapy.

...